inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Lithium dioxobis[trioxoiodato(V)]vanadate, Li[VO₂(IO₃)₂]

Xue-An Chen,^a* Li Zhang,^a Xin-An Chang,^a He-Gui Zang^a and Wei-Qiang Xiao^b

^aCollege of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100022, People's Republic of China, and ^bInstitute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100022, People's Republic of China Correspondence e-mail: xueanchen@bjut.edu.cn

Received 6 January 2006 Accepted 13 July 2006 Online 11 August 2006

The title compound represents a new structure type, in which distorted VO_6 octahedra are bridged by iodate groups to form infinite two-dimensional $[VO_2(IO_3)_2]^-$ layers that are separated by octahedrally coordinated Li^+ cations.

Comment

Two types of non-linear optical (NLO) materials are well known. The first kind, such as LiNbO3, BaTiO3, etc., contain high-valent d^0 transition metals that are readily susceptible to second-order Jahn-Teller (SOJT) distortions, giving rise to distorted MO_6^{n-} octahedra. The second kind, *e.g.* α -LiIO₃ and KIO_3 , contain pyramidal IO_3^- ligands with stereochemically active non-bonding electron pairs (Halasyamani & Poeppelmeier, 1998). If an SOJT-distorted transition metal and anions containing non-bonding electron pairs were combined in the same crystal, and if, furthermore, they were arranged in a manner favourable for producing a large NLO effect, a new class of NLO materials would be expected. Based on this idea, several vanadyl iodates, $A[VO_2(IO_3)_2] (A = K \text{ or } Rb)$ (Sykora, Ok, Halasyamani, Wells & Albrecht-Schmitt, 2002) and $A[(VO)_2(IO_3)_3O_2]$ (A = NH₄, Rb or Cs), have recently been synthesized, among which the last three compounds show large second-harmonic generation (SHG) responses of about 500 times that of α -SiO₂ (Sykora, Ok, Halasyamani, Wells & Albrecht-Schmitt, 2002). However, Li-containing vanadyl iodates have not been reported to date. The current interest in these materials has enabled us to discover $Li[VO_2(IO_3)_2]$, which does not exhibit SHG effects but which crystallizes in a unique structural type different from those of the K and Rb analogues. We report its crystal structure here.

Li[VO₂(IO₃)₂] represents a new structure type (Pearson symbol mP48; Villars & Calvert, 1991) and is characterized by VO₆ octahedra that are bridged by iodate groups to form an infinite two-dimensional [VO₂(IO₃)₂]⁻ layer parallel to the ($\overline{102}$) plane, as shown in Fig. 1. The anionic layers are stacked approximately along the [$10\overline{2}$] direction, with the interlayer

void spaces filled by Li⁺ cations to balance charge. Each Li⁺ ion is coordinated by six O atoms in a slightly distorted octahedral geometry, with Li–O distances in the range 2.021 (9)–2.228 (9) Å. The average Li–O bond distance of 2.099 Å is close to Shannon's crystal radii sum of 2.11 Å (Shannon, 1976) and is also comparable with those found in LiIO₃ (2.111 Å; Svensson *et al.*, 1983) and LiH₄IO₆·H₂O (2.135 Å; Kraft & Jansen, 1994), all featuring octahedrally coordinated Li⁺.

There is one crystallographically unique V atom, which occupies a distorted octahedron, with two short vanadyl V=O bonds to O7 and O8, and four V-O-I links via atoms O2, O3, O5 and O6 (Fig. 2). The cis O-V-O octahedral angles vary from 77.19 (15) to 100.4 (2) $^{\circ}$, and the *trans* angles are in the range $158.36(17)-169.25(19)^\circ$, deviating significantly from the expected values of 90 and 180°, respectively. The V atoms are susceptible to SOJT distortion and are displaced out of the centre of an idealized VO₆ octahedron along a C_2 axis of the octahedron by about 0.406 Å, thus resulting in the formation of two short [V-O7 = 1.632 (4) Å and V-O8 =1.649 (4) Å], two intermediate [V-O6 = 1.992 (4) Å and V-O3 = 1.998 (4) Å] and two long [V - O2 = 2.196 (4) Å and V -O5 = 2.239 (4) Å] bonds. This is very similar to the situation for octahedral Mo^{VI} atoms observed in $AMoO_3(IO_3)$ (A = K, Rb or Cs; Sykora, Ok, Halasyamani & Albrecht-Schmitt, 2002), but slightly different from the situation for V^{V} atoms in the previously reported vanadyl iodates $A[(VO)_2(IO_3)_3O_2]$ $(A = NH_4, Rb \text{ or } Cs)$, where the distortion of the VO₆ group toward one O atom leads to a 'one short plus two intermediate plus three long' V-O bonding scheme (Sykora, Ok, Halasyamani, Wells & Albrecht-Schmitt, 2002). The V-O bond distances observed in $Li[VO_2(IO_3)_2]$ compare well with those found in $A[(VO)_2(IO_3)_3O_2]$ (A = NH₄, Rb or Cs) [1.620 (9)-2.227 (8) Å] and $(NH_4)(VO_2)_3(SeO_3)_2 [1.637 (10)-$ 2.198 (11) A; Vaughey et al., 1994].

The I atoms occupy two different crystallographic sites. They are both coordinated by three O atoms, forming trigonal-pyramidal geometries. Each IO_3^- group acts as a

Figure 1

The crystal structure of $\text{Li}[\text{VO}_2(\text{IO}_3)_2]$, projected along the [010] direction. Black circles denote Li atoms, cross-hatched circles V atoms, shaded circles I atoms and open circles O atoms.

Figure 2

The local coordination geometries of V and I in Li[VO₂(IO₃)₂], with displacement ellipsoids drawn at the 50% probability level and the Li⁺ ion omitted. [Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) 1 - x, $\frac{1}{2} + y$, $\frac{3}{2} - z$.]

bidentate ligand bonded to two V⁵⁺ centres via two μ_2 -O atoms, with the third O atom terminal. The I-O bond lengths for the O atoms bound to the V^{5+} centres [1.810 (4)-1.855 (4) Å] are slightly longer than those for the terminal O atoms [1.793 (4) and 1.798 (4) Å; Table 1], as expected, and both are in good agreement with the values observed in $A[VO_2(IO_3)_2]$ (A = K or Rb). The O-I-O bond angles are normal, lying in the range 96.8 (2)-101.27 (19)°. The refined structural model was further supported by bond-valence sum (BVS) calculations (Brown & Altermatt, 1985), which gave reasonable values of 1.10, 4.95 and 4.92-4.95 for Li, V and I atoms, respectively.

In the family of compounds $A[VO_2(IO_3)_2]$ (A = Li, Na, K, Rb or Cs), only the K and Rb phases have been structurally characterized to date. Their crystal structures contain fivecoordinate V^V atoms that are bound by two terminal O atoms, and by one monodentate and two bridging iodate anions, to create a fundamental [VO₂(IO₃)₃]²⁻ building unit. Adjacent $[VO_2(IO_3)_3]^{2-}$ units are linked together through bridging iodate anions to generate a one-dimensional [VO₂(IO₃)₂]⁻ chain. These chains are further separated by nine-coordinate K⁺ and 11-coordinated Rb⁺ cations, giving rise to different space-group symmetries $(P2_1/n \text{ for the K phase and } P\overline{1} \text{ for the})$ Rb phase) (Sykora, Ok, Halasyamani, Wells & Albrecht-Schmitt, 2002). The structural differences between $A[VO_2(IO_3)_2]$ (A = Li, K or Rb) are related not only to the variation in the coordination environments around the V atoms, but also to the cation size effect: six-coordinate octahedral geometry is preferred by the smaller Li⁺ ions, a ninecoordinate environment is observed for the K⁺ ions, and a higher coordination number of 11 is required for the larger Rb⁺ cations.

Experimental

Li₂CO₃ (0.487 mmol), V₂O₅ (0.489 mmol), I₂O₅ (0.983 mmol) and H₂O (2 ml) were weighed and sealed in a 15 ml Teflon-lined stainless steel vessel. This was heated in an oven at 443 K for one week under autogenous pressure and then cooled slowly to room temperature. The product consisted of vellow block-like crystals of $Li[VO_2(IO_3)_2]$, the largest having dimensions of $0.6 \times 0.6 \times 0.4$ mm, in a pale-yellow mother liquor. The crystals, in about 50% yield (based on V), were isolated by washing the reaction product with deionized water and anhydrous ethanol, followed by drying with anhydrous acetone. The Crystal data

$Li[VO_2(IO_3)_2]$	Z = 4
$M_r = 439.68$	$D_x = 4.623 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.994 (2) Å	$\mu = 11.35 \text{ mm}^{-1}$
b = 5.2020 (10) Å	T = 290 K
c = 13.798 (3) Å	Block, yellow
$\beta = 118.28 \ (3)^{\circ}$	$0.2 \times 0.2 \times 0.1 \text{ mm}$
V = 631.7 (3) Å ³	
Data collection	
Rigaku AFC-7R diffractometer	2681 reflections with $I > 2\sigma(I)$
$\omega/2\theta$ scans	$R_{\rm int} = 0.008$
	1111

W/20 scans	$K_{int} = 0.008$
Absorption correction: ψ scan	$\theta_{\rm max} = 35.0^{\circ}$
(Kopfmann & Huber, 1968)	3 standard reflections
$T_{\min} = 0.125, \ T_{\max} = 0.313$	every 150 reflections
3029 measured reflections	intensity decay: 1.8%
2777 independent reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0331P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 13.2592 <i>P</i>]
$wR(F^2) = 0.102$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.25	$(\Delta/\sigma)_{\rm max} = 0.001$
2777 reflections	$\Delta \rho_{\rm max} = 2.58 \text{ e } \text{\AA}^{-3}$
104 parameters	$\Delta \rho_{\rm min} = -2.60 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected bond lengths (Å).

1-01	1.798 (4)	I2-O4	1.793 (4)
1-02	1.810 (4)	I2-O5	1.814 (4)
1-03	1.846 (4)	I2-O6	1.855 (4)

All atoms were refined anisotropically, except for Li, which was refined isotropically.

Data collection: Rigaku/AFC Diffractometer Control Software (Rigaku, 1994); cell refinement: Rigaku/AFC Diffractometer Control Software; data reduction: Rigaku/AFC Diffractometer Control Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: SHELXL97.

This work was supported by the Talent Training Funds of Beijing through grant No. 20051D0501501.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: EM3001). Services for accessing these data are described at the back of the journal.

References

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Dowty, E. (1999). ATOMS. Version 5.0. Shape Software, 521 Hidden Valley Road, Kingsport, Tennessee, USA.

Halasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753-2769.

Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.

- Kraft, T. & Jansen, M. (1994). Z. Anorg. Allg. Chem. 620, 805-808.
- Rigaku (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Svensson, C., Albertsson, J., Liminga, R., Kvick, Å. & Abrahams, S. C. (1983). J. Chem. Phys. 78, 7343–7352.
- Sykora, R. E., Ok, K. M., Halasyamani, P. S. & Albrecht-Schmitt, T. E. (2002). J. Am. Chem. Soc. **124**, 1951–1957.
- Sykora, R. E., Ok, K. M., Halasyamani, P. S., Wells, D. M. & Albrecht-Schmitt, T. E. (2002). *Chem. Mater.* 14, 2741–2749.
- Vaughey, J. T., Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). *Inorg. Chem.* 33, 4370–4375.
- Villars, P. & Calvert, L. D. (1991). Pearson's Handbook of Crystallographic Data for Intermetallic Phases. Materials Park, Ohio: The Materials Information Society.